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Abstract—This work introduces an open-source, Process
Technology-agnostic framework for hierarchical circuit netlist,
layout, and Reinforcement Learning (RL) optimization. The
layout, netlist, and optimization python API is fully modular
and publicly installable. It features a bottom-up hierarchical
construction, which allows for complete design reuse across
provided PDKs. The modular hierarchy also facilitates parallel
circuit design iterations on cloud platforms. To illustrate its
capabilities, a two-stage OpAmp with a 5T first-stage, common-
source second-stage, and miller compensation is implemented.
We instantiate the OpAmp in two different open-source process
design Kkits (OpenPDKs) using both room-temperature models
and cryogenic (4K) models. With a human designed version
as the baseline, we leveraged the parameterization capabilities
of the framework and applied the RL optimizer to adapt to
the power consumption limits suitable for cryogenic applications
while maintaining gain and bandwidth performance. Using the
modular RL optimization framework we achieve a 6x reduction
in power consumption compared to manually designed circuits
while maintaining gain to within 2%.

Index Terms—Open-Source, Generator, AMS, PDK agnostic,
Cloud, Cryogenic, Reinforcement learning.

I. INTRODUCTION
A. Background and Motivation

The surging demand for Analog and Mixed Signal (AMS)
design automation and open-source reproducible chip design,
underscored in recent works [1], [2], reflects the growing
need for automated generators to help build a common infras-
tructure for the open-source chip design ecosystem. Template
generators have been applied to AMS circuits with acceptable
upfront engineering effort and high-performance design, such
as [3], [4]. However, these approaches are not suitable for
some analog cells where a higher degree of complex, non-
pattern layout optimization is required. Programmatic ap-
proaches can be applied where template approaches fall short.
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Fig. 1: Overview of this work with key contributions high-
lighted in Red.

Tools such as [5], [6] enable the automated construction of
such analog blocks and demonstrate high-performance, but
they require a large design effort to port to new technologies
and are not demonstrated with open-source technologies [7].
Tools like [8] attempt to fulfill the open-source ethos of
reproducibility in addition to reported silicon results with
template based generators. This work seeks to build upon the
aforementioned foundation, addressing the short-comings of
template approaches, by providing a programmatic framework
with the following objectives:

o Open Development & Common Infrastructure: Gener-
ators are constructed with open-source tools and commu-
nity support to build a design library. The modular python
interface available publicly on PyPI makes it easy to
interface with other tools, develop add-ons and contribute.

¢ Cloud-based deployment: This project utilizes existing
multi-platform parallelization libraries, Python tools, and
package managers, allowing for easy installation and
cloud deployment.

« Easy to port between PDKs: The project aims to provide
a layer of abstraction for planar technologies, making it
easy to add support for additional technologies. Once new
technology layers, rules, and models are provided, the
existing generators can run fully automatically end-to-end
with 100% code reuse.
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Fig. 2: Detailed View of the Framework and Workflow

Glayout, the open-source Python framework included in the
OpenFASOC GitHub repository [8] as summarized in Fig. 1, is
detailed in this work. OpenFASOC includes both template and
programmatic analog generator tools (as described here) for a
holistic approach. The key elements of this work, highlighted
in Fig. 1 includes the Glayout Programmatic Generator and
the Reinforcement Learning Optimizer. These tools are all
modular, allowing for easy importing and deployment on cloud
infrastructure.

B. Proposed Framework

This work is comprised of two components:

1) GLayout: A Programmatic, PDK Agnostic Analog Lay-

out & Netlist Generator

2) RLOpt: A Reinforcement-Learning Circuit Design Op-

timizer

The workflow for using our framework is illustrated in Fig.
2. With GLayout, the user is able to create hierarchical
parameterized layouts. The circuit that is generated can then
be extracted and simulated automatically within the Python
environment. The RLOpt module uses an RL algorithm to
generate a new set of parameters using the simulation results.
This process of parameter generation, layout, extraction, and
simulation is repeated until target specifications are met.

Our infrastructure is demonstrated with the complete design
process of an OpAmp and integration into nanofabrication test
tiles targeting cryogenic and room temperature applications.
For comparison, our baseline, manually designed OpAmp has
a 3mW power consumption which is not suitable for cryo

TABLE I: Generic Layers abstracts technology-specific layers.

Generic Layers | SKY130 | GF180
Polysilicon (66, 20) | (30, 0)

FEOL n-select (93, 44) | (32, 0)
Metal 1 (67, 20) | (34, 0)

BEOL Via 1 (67, 44) | (35, 0)

applications. The RLOpt module produced designs which met
this spec while trading off bandwidth and noise performance.
This demonstration is reproducible from the code available on
GitHub [8] and the 130nm tile has been submitted for tapeout.

II. GLAYOUT: A GENERIC LAYER FOR ABSTRACTED
LAYOUT & NETLIST GENERATION

Glayout is installable on Linux platforms from the PyPI
package manager. GLayout offers tools for generating the
layout file (GDSII) and the pre-parasitic extraction (pre-PEX)
netlist.

A. MappedPDK: Technology Abstraction

As depicted in Fig. 2, GLayout interfaces with a Process De-
sign Kit (PDK) through the "MappedPDK” class. MappedPDK
additionally calls the DRC-rule checker, which can verify rule
compliance at any level of hierarchy. Adding support for a new
technology only requires implementing a MappedPDK object.
This involves providing layer and rule mappings (described
below), and simulation model files. To aid in reproducibility,
Glayout comes pre-packaged with open-source 130nm and
180nm PDK support.

1) Generic Layers: CMOS technologies generally re-
quire similar layers across PDKs, some of which are: “ac-
tive/diffusion”, “p-select”, “n-select”, “metal contact”, “metal
17, “vial”, ...etc. Table I illustrates that even though different
Process Design Kits (PDKs) have similar layers, they are
named and represented differently. For instance, the Front-
End-of-Line (FEOL) layers that define transistors may have
similar functions with different representations. MappedPDK
offers a unified representation of layer functionality, which
other software components utilize as an abstraction.
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Fig. 3: Generic Rules are stored as an undirected graph for
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2) Generic Rules: DRC rules are mapped as a graph
structure. Rule decks typically consist of three similar
rules: “min_separation”, “min_enclosure”, and “min_width”
(or "width” for via layers). By prescribing one of these three
rules between combinations of layers, hundreds of rules can
be created. Additionally, there can be “self rules” that describe
a requirement between a layer and itself; most “min_width”
rules are self-rules. Fig. 3 shows the rule matrix implemented
in MappedPDK. Note that the context-dependent rules (i.e.
lambda rules) are omitted from this simplified checker. By
taking the worst-case value for each rule, MappedPDK enables
rule lookup with limited required context of surrounding layer
geometry.

B. A Hierarchical Design Approach

1) High-Level Parameterized-Cells (PCells) : All circuit
designs in this software framework are created using a bottom-
up approach, combining hierarchy and context-conscious rout-
ing at each level to produce clean layouts and increase
complexity. The generic framework provides a library of basic
cells (MOSFETs, capacitors, etc) using the MappedPDK API.
Those generic implementations ensure standardized layouts
and features so that high-quality parameterized primitives can
be built on top layer-by-layer. Fig. 4 illustrates how complex
structures are constructed by combining simpler primitives in
a layered manner.

2) Indexing of Terminals and Routing: Ports are polygon
edges. Glayout routing functions create paths between ports.
These routing functions are context-insensitive so are referred
to as “dumb routes”. The DRC checker is used to ensure
their accuracy. Larger designs with complicated hierarchies
tend to include thousands of ports, so port organization is key.
This framework uses a syntax that describes a “PortTree”, as
shown in 5. These trees are implemented as a Python class and
store port names for easy lookup. To ensure legal construction,
routing over blocks which are lower in the hierarchy is avoided
if possible.

3) Layout & Netlists Generation: The framework includes
functions that enable automatic traversal in the hierarchy and
creation of the GDSII layout file. Additionally, it is necessary

An NMOS Instance

Body Tie

Selecting the West Edge of the Source Port
of an NMOS with M=2

Fig. 5: Port tree of a Multiplier = 2 Transistor, The Selected
Port is Highlighted. Port trees organize port names which
allows the programmer to specify point to point routing in
Python code

to have a pre-PEX netlist for layout-versus-schematic (LVS)
checks. The framework also provides APIs to generate this
netlist automatically.

ITI. RLOPT: A REINFORCEMENT LEARNING OPTIMIZER
TABLE II: Comparison of optimizers tools. Optimized spec-

ifications are soft constraints and only optimized after hard
(capped) constraints are met.

Tool Specification PEX Sim Example Method
[9] Capped+Optimized no TIA DDPG
[10] Optimized no LDO, TIA DDPG
[11] Capped yes OpAmp PPO
[12] Capped yes OpAmp DNN
RLOpt Capped+Optimized yes OpAmp PPO

Machine Learning (ML) approaches to circuit optimization,
such as [13] and [14], conceptualize automatic analog sizing
as an optimization problem and employ Bayesian optimization
(BO) techniques to efficiently search for sizing solutions.
Works like [9], [11], [15] use RL, where the circuit simulator
serves as an environment that the RL agent interacts with.
These approaches train specialized RL agents using algorithms
like deep deterministic policy gradient (DDPG) [16]. RL-
inspired methods [17], [18] use an RL actor-critic method
[19] to strategically combine the strengths of RL, BO, and
population-based techniques [17]. As a result, they can meet
specified performance constraints while minimizing the num-
ber of required simulations (and compute time).

The overview of our framework is shown in Fig. 6, and
Algo. 1. In our framework, the RL agent observes the spec-
ifications returned by the post-layout simulation environment
and decides an action for each layout parameter based on its
learned policies. After receiving the new set of parameters, the
simulation environment provides a new set of specifications
for the RL agent to calculate the reward associated with the
specific action taken.

In this process, we have two types of specifications: capped
specifications (¢S) and optimized specifications (0S). The
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Fig. 6: The RL Agent’s position in the optimization loop
is shown, along with the agent-generated sequence of ac-
tions/parameters for both capped and optimized specifications.

goal for ¢S is to reach our target specification and then stop
growing, while for oS, we aim to maximize their growth. As
illustrated in Fig. 6, the RL agent generates a trajectory with
n steps. Once the ¢S reach the target specification, the oS
continues to be optimized as much as possible. This dynamic
reflects the RL agent’s ability to adapt and prioritize different
types of specifications during the trajectory generation process

To provide the RL agent with a comprehensive understand-
ing of various regions within the design space, we generate 100
different target specifications for the training process. During
the training process, we generate L trajectories that comprise
multiple sequential environment steps, each with targets se-
lected from the set of M specifications. At each step, rewards
are accumulated until the predefined predetermined maximum
number of steps is reached or the capped specifications are
reached and optimized specifications are not getting higher.
This accumulation is computed as the unweighted sum of the
bounded normalized differences between each specification,
denoted as ’0S, ¢S’ and their corresponding target/global
value, represented as "0S™, ¢S*’.

cS — eSx OS—OS*) 0
cS + cSx’ 0S + oS*

r=> Tes+ Y Tos 2

In the agent’s reward scheme, it doesn’t receive any reward
for excessively surpassing any ¢S target. If the r.s exceeds
the target, it is effectively clipped to zero in such instances,
ensuring that the agent is not rewarded for excessive perfor-
mance in a single metric while neglecting others. However,
for oS, the agent will receive rewards for achieving excessive
performance, as this aligns with the optimization objectives
for these metrics.

The accumulation of rewards usually serves as a measure
of the agent’s performance throughout the trajectory. After
executing multiple trajectories with varying specifications,
the neural network undergoes updates using policy gradient
techniques. This updating process is aimed at maximizing

Tes = min( 0), ros=(

Algorithm 1 Reinforcement Learning Training Algorithm

1: Initialize Sx
2: env < Layout generator and simulation

/lcreate targets for training

3: while ) ~ feward < 6 do

4: Dataset < ]

5: Reward + |]

6: for len(batchsize) do

7: s+ Sx /lpick one set of target specs
8: Trajectory <+ ||

9: for horizon do

10: Initialize s, p

11: if s >= sx & reward > last reward then
12: t < nextStep(env, s, s, p)

13: Trajectory < append(t)

14: s, p < env(s, sx,p)

15: else

16: break

17: end if

18: end for

19: Dataset < append(Trajectory)

20: Reward < reward(Trajectory)

21: PPO_Update(Dataset, Reward)

22: end for

23: end while

the expected cumulative reward, which enhances the agent’s
ability to make optimal decisions in future interactions with
the simulation environment.

Training sessions are executed repeatedly to ensure the
robustness of the RL agent. The training process is completed
when the mean reward reaches or surpasses a value of 6. This
threshold indicates that the agent has effectively achieved the
capped specifications and has also made progress in optimizing
the optimized specifications for several additional steps. A
summary of this training procedure is in Algo. 1.

IV. EXPERIMENTAL VALIDATION: A TWO-STAGE OPAMP
A. Design Specification & Baseline

In this section, a two-stage OpAmp targeting a specific
tapeout is presented. The goal is to fabricate an array of
around 50 OpAmps with many different flavors (Absolute
highest UGB / Absolute lowest Power / High FoM / Different
Temperature, etc.) to make this wafer suitable for various
applications by post-fabrication metallization. This task is
challenging for traditional approaches due to the vast number
of simulations and human hours required to finalize all the
designs.

As shown in Fig. 8. The OpAmps are paired with probe pads
for the nano-fabrication (NanoFab) experiment which target
both cryogenic and room temperature use. The cryogenic
models used are open-source Cryogenic transistor model set
in 130nm targeting 4K [20]. The human designer produced a

TABLE III: Human-designed OpAmp vs machine-designed
OpAmp runs aimed at finding low power and high perfor-
mance tradeoff

Human Machine
Shotgun Itr. 1 Itr. 20
PM (deg) 54 66 83 82
Power (W) 3m 0.5 m 035m 026 m
Noise (V/sqrt(Hz)) 5.6 n 83 n 15n 22 n
dcGain (dB20) 92 92 97 90
UGB (Hz) 300 M 115 M 52 M 135 M




., Nz B EE W, W d
e NS e e ] E =
W Ee (M. e YL e

s S BEIS =mms = N

EE e (R e (6

me Ems LS = e=z =

e SR el | e, |(EEs i
s EES s | es | EES S -
FH e i I L.

E=SS EES S mmms = amg

Bl e, (M. . e, eH

S maes EAES EIES aws

e Bz s BN SR . EME M (E
EE=s S EMES aus EAES NS mmEm I B HiE S

(a). SKY130 (b). SKY130 -
Layouts Zoomed-in View of One Instance

= Desig- | Tunable
Component : P "
G B B D nators arameters
BEs B W= mes Input Pair M2
Stage 1 | Current Source | M1
B = e PMOS Load | M3, 4
L Input PMOS M5 .
.;'L s :- Stage 2 Current Source | M6 WIL)\N
Coax Input NMOS -
OO G I Driver | Current Source | -
- - e MIM Cap C1
O s Routing - Width Multipler
- e e W Antenna Diode N
(W s SN s 26 Params.
W e Wi Wi
(). GF180 (d). Table of All Tunable Parameters
Layouts

Fig. 7: Selected GDS layouts for SKY130 on the left and GF180 on the right. One high UGB OpAmp is enlarged and labeled

60pm Probing
Pads

NanoFab

10pm Pads

Fig. 8: Schematic of two-stage OpAmp design used in this
project
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high-quality design over a few weeks which was at a power of
3mW. However, the cryogenic experiment environment has a
significant power budget due to its limited thermal capabilities,
demanding further optimization of the power consumption. To
achieve this, we programmed the design in GLayout and did
an automated optimization targeting lower power. We focus
on a bandwidth and noise to power tradeoff. The result is
an OpAmp with similar gain but with a 6 times reduction in
power. The results are shown in Table III.

Due to device threshold changes, the same design will
perform differently when put in room temperature (RT). Thus,
it’s beneficial to simulate the same designs using both 4K and
RT models to select optimal designs for different temperature
ranges.

B. The Implementation Process in GLayout

The design is translated to Python classes as described
in the previous sections. To demonstrate the functionality
of our generator and to seed the RL run, we generated an
array of 16000 different OpAmps in 130nm technology and
180nm technologies. The software framework is deployed
across multiple cloud servers, utilizing more than 256 CPU
threads to generate & simulate in a massively parallel way.

In Fig. 7(a) are 48 selected OpAmps from the 130nm array
with the highest OpAmp by unity gain bandwidth highlighted
to show a specific layout. This specific layout also shows how
the schematic in Fig. 8 with transistors labeled is mapped to
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the layout in Fig. 7(c). In Fig. 7(b) are 48 selected OpAmps
from the 180nm array of generated OpAmps. The table in Fig.
9 shows all the parameters being swept during the shotgun
approach.

C. GLayout with Reinforcement Framework

Using the Glayout framework with layout parametrization
allows the optimizer to consider layout parasitics within the
design loop. As shown in Fig. 10, ignoring post-layout par-
asitics results in large error in simulated metrics, especially
impacting bandwidth, noise, and power metrics. Furthermore,
the best OpAmp when considering parasitics is not the best
pre-layout.

1) Approach: The RL loop is enabled with a number of
seed designs from the shotgun approach as the starting point,
and the cryogenic power target is added. Target specifications
include unity gain bandwidth (UGB) within the range of
[1 x 107, 1 x 10%] Hz and a figure of merit (FoM) of "UGB
efficiency”, which is calculated as FoM = UGB/power.
During the RL process, UGB serves as the capped specifica-
tions, while FoM represents the optimized specification. The
RL loop will try to reach the target range of UGB, and try
to make FoM as high as possible. This will result in tradeoffs
between UGB and power.

As seen in 11, our RL agent followed an average trajectory
length of 10 simulation steps to converge efficiently. We
employed 200 target design specifications for training the RL
agent and an additional 100 for testing. Importantly, all of
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these test specifications were entirely new and fell within the
predefined range established during training.

2) Results: Fig. 11 illustrates a graphical comparison be-
tween data generated with and without our RL framework.
Notably, we exceed the boundary of the shotgun approach.
Additionally, for the design points to be successfully achieved,
our framework requires an average of approximately ten sim-
ulation steps, a significant efficiency improvement compared
to traditional genetic algorithms.

D. Accelerating nanofabrication research of emerging tech-
nologies

To address the challenge of parasitic de-embedding during
device characterization, the generator is deployed in a project
aimed at constructing tiles with densely packed active, sup-
portive circuit elements and bare pads. As illustrated in Fig.
12 The goal is to use the active elements to characterize novel
CMOS+X nano-devices fabricated directly on top of the tiles.
Because the nano-devices under test are not deterministic,
the tile must provide a wide variety of such active elements
to satisfy the wide range of applications and operation en-
vironments (from room temperature to cryogenic). From a
library of OpAmp cells generated using the tool presented
in this paper, we selected OpAmps optimal for different -
3dB bandwidth, UGB, DC gain, noise, power, and optimal
operating temperature goals to construct the tile. Two tiles,
as shown in Fig. 13 of test devices were generated using
the software framework. In addition to a Phase-Lock-Loop
(PLL) design done using the traditional cell-based approach
[21], the tile contains 50 OpAmps, with different optimization
goals, target temperature range, and pad designs. The tiles have
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been submitted for a tapeout in the Skywater 130nm process.
The layout-vs-schematic (LVS) check is done in commercial
tools using the pre-PEX netlist generated by GLayout to ensure
correctness.

V. CONCLUSIONS

We introduced a software framework that automates from
Python code to layout. The approach is validated through a
comprehensive demonstration involving a two-stage OpAmp
integrated into a Nano-Fabrication test tile, subsequently de-
livered to tapeout. We showcase the use case of our RL
framework and accounting for parasitics using the Glayout
framework to produce layout within the optimization loop.

Compared to human designs, the final design achieved a
power improvement of more than 10 times while maintaining
the gain specification and optimally trading off bandwidth.
Our tool achieves high circuit performance and significantly
reduces the design cycle duration. Incorporating open-source
principles, cloud deployment capabilities, seamless integra-
tion, and PDK portability collectively position Glayout as a
valuable asset in advancing the efficiency and accessibility of
analog and mixed-signal open-source design automation.
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